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Abstract: The goal of the paper is to theoretically evaluate an approximate
actuarial aversion risk coefficient in relation to future utility trend and discuss
an analytic model for investigating the behaviour of risk aversion random risk
together with the influence it exerts on utility function. By initiating Newton s
process, the result shows that the scheme holder s risk premium for small actuarially
neutral visk , is the product of half of the aversion and the volatility term. The paper
stresses the importance of numerical methods in actuarial risk theory and also
brings our attention to risk measurement applications. Furthermore, it describes
the procedure of estimating the intensity of aversion co-efficient using numerical
algorithm. i relies heavily on the analvtic properties of utility function whose
gradient function does not vanish. The estimation of aversion coefficient lends
credence to risk theory because of its potency to measure riskiness of insurance
portfolio guiding both risk manager and scheme holder either or not to assume
risk. However, the estimation of aversion involves a model based on the knowledge
of differential equation.
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1. Introduction

The objective of this paper is to obtain particular views of utility function and its
relevance in insurance applications in particular to estimate the co-efficient of risk
aversion, the maximum premium for a scheme holder buying an insurance product and
the utility gradient function using the Taylor’s series expansion to the appropriate degree
of accuracy. When the utility of wealth u(}?) is required at different levels and underlying

mathematical formula for risk aversion is not given, then the aversion a(j-‘) can only be

determined by estimation. Underwriters are not usually ready to assume certain risks due
to the nature of complexity involved in underwriting process. The problem of estimating
risk aversion co-efficient at any given instant occurs frequently in insurance risk since it
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measures the degree of unwillingness of the insurers to assume underwriting risk.
O’Donoghue and Jason (2018) found that in a bid to capturing aversion risk co-efficient,
the benchmark in actuarial risk theory 1s to invoke the expected utility model in which
aversion risk co-cfficient is obtained from diminishing marginal utility of wealth. If u(}')

denotes expected utility of wealth at a level y and aly) is the instantancous aversion
cocfficient, then it is not possible to cvaluate the valuc of u(_y) analytically from the

u''(v)

second order ordinary differential equation described by a(y)=— ,( ) unless u(.\‘+l)
u'ly

can be functionally re-expressed as a convergent series polynomial function. This is a
mathematical framework for studying the relationship between the gradient function of
cxpected utility of wealth at a level y, instantancous risk aversion co-efficient and the
marginal utility function. On the basis of known levels of wealth, the task is to accurately
estimate aversion coefficient a(v) at any instant using Taylor’s scries cxpansion with an
assumption that u(y) is a convergent serics polynomial function. Given the utility
function u(y), a second problem is how to measure approximately to maximum premium

2" for a random risk Y . Therefore, the task is to establish approximate value instead of
their real analytical value using tools of approximation. The aversion a(y) can now be
approximated from the numerical point of view by invoking limiting processes so that
inference can be drawn about the probability of an insurer not taking up a risk in an
interval of time. The estimation of a(y) is by far an interesting but a difficult problem
since part of the difficulty is the computation of maximum premium > that an insured
will be ready to pay for a risk if the only information given is u(y). The aversion
coefficient as observed in (Pratt, 1964) is subject to various interpretation as a measure of
local risk aversion such that both the curvature of u(_v) and u”(}f) may not sufficiently
measure the aversion. The value of u'('y) at a point on the « curve is the gradient or the
direction at that point.

2. The Curvature of the Utility Function

The degree of aversion to risk is dependent on the curvature of the underlying utility function, it
is logical to measure it with second derivative. Aversion coefficient function is characterized by
invariance under linear transformations of «(w) as can be seen.

U=C+ !\'.!.'(1-1') ]
U '(w) = ku '(11-‘) :
U'(w) = ku "(u)J

U'(w)  u"(w
Then _!( ): ’( )

U (n') u'(w)
not an efficient measure of aversion to risk and consequently, the second derivative is
normalized to measure the aversion to risk adequately. Increasing or decreasing absolute or
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relative risk aversion may have consequential implications on portfolio having some risky asset
and some risk-free asset. [f an insurer experiences an increase in asset, then he can increase the
value of insurance portfolio held in risky assct if absolute value of aversion falls.

alw)=wA(w).a'(w)< 0= A(w)<0

The aversion to risk is a measure of concavity associated with the aversion coefficient, therefore
aversion u(_l') measures concavity of the utility at a level of asset 1. The only available option
to measure concavity is cither u "(y) or by the curvature of u(y). The curvature of the utility
function measures how rapid the utility function changes tangential direction in the

neighborhood of the defined point. In literature, curvature is measured by the radius of curvature
I

In order to analyze the curvature, the method of geometry is used. We let H,P,G be a right
angled triangle right angled at G whose small hypotenuse, length 0Z is representing the length
of the arc from G to Pand such that w(¢) is the gradient at /. The height PG is & while
base HG is ov. Because of the infinitesimally small size o of the hypotenuse, the direction of
the chord from H to P and the direction of the tangent to the arc running from H to P will be
very close as their numerical difference approaches value zero. As of approaches zero,
du

—=tanw({).
dy

d—‘) =cosm(J)
de

d [u’u J _diane(L)

dac\dy d<

d [ dull dv d dew ( ¢)
— — || —= |=—(tanw)
dvidv \dg ) dw dd

cos ()(;’)( (h’f ] =sec’ ()
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72 Teol &
{d If]—s;ccg m(@')&(b)

dv” dg
3
3 5 2 2 auY P
= 2 =| tan? 112= 1
sec’ (&) (sec w(()) [an o($)+ } [a’y] +
d*u s ado(d)
d{’)({:)_l_ C?{l"z _SCC (J(‘:‘) (l’."';
& p . 2
=7 duT [d] :
— | +1 — | +1
dy dy
5 -3
2
[d”} +1
dv | dc¢
TR e
dy’

If the utility function u(y) is given, then the first and the second derivatives can be
computed to obtain the curvature. The expected utility model representing the canonical
theory of choice under risk uncertainty functionally describes the financial health of
insurer where an insured is risk averse and as a rational policy holder, inadvertently pays
in excess of the expected value of his claims to ensure coverage. The set conditions
through which decisions are taken under uncertainty is by comparing the expected
utilities associated with these payoffs.

3. Literature Review

Insurance contracts are the transfer mechanism of the risk Y from policyholder to the
underwriter where compensation is paid in form of indemnity which is not determined in
advance by either of the insured or insurance company. In Kaas et al. (2008); Liu and
Tsai-Ling (2021), an insurance policy is be defined by an indemnity function
> :R” — R” however, it is noted that hardly does an insurance policy fully cover the

whole of insured peril, so that the risk manager cover only a threshold limit > (1) while
the policy holder retains the remaining portion of the scheme S( )= [Y—Z(y)], S is
the threshold limit. provided, Y > Z(y) so that in the event the random loss is smaller

than the threshold limit defined by insurer’s proportion, the insurance company may
legally repudiate claim filed by the insured and hence will not be liable to indemnity the
insured as attested to in the terms and condition of the policy document. Kaas et al.
(2008) agreed that in order to drastically reduce the financial impact of extreme random
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losses which could account for negative premium and simultancously constraint the
insured from making any gain from the contract, the indemnity function Y.( ) must be

bounded in a domain D < R* such that 0<X(y)<y where the lower bound suggests
that >(») is a positive random function while the upper bound is the limit of indemnity.

In Eisenhauer and Halek (1999); Eeckhoudt (2012); Johannes et al. (2018), the insured
pays a premium p in exchange for transferred risk to the insurer and then the insured

policy is defined as the ordered pair (p,X (1)) whose initial wealth w now declines to
[w+ Z(}’)—(p-&-_v)} It is on this basis that the utility model establishes that a rational

policy holder who is risk averse is ready to pay the maximum premium more than the
expected value of his claims E(Y) to ensure he is covered. A risk averse takes an
insurance decision under uncertainty by weighing the expectation of the utility function
on Jensen’s inequality scale. Given a sequence of random lossesY,.Y,....Y .Y .Y .:

The insured takes the mathematical expectation of
E(UW-Y)).E(UW-Y,)).E(UW-Y,,))

In order to reduce his risk, he can numerically evaluate which expected utility has the
highest value so that he can choose the appropriate loss. It is inferred from Buhlmann
(1970); Buhlmanhn and Jewell (1979); Buhlmann (1984):; Gerber and Shiu (1994);
Gerber and Shiu (1996); Kaas et al. (2008) that the condition of equivalent expected
utility is applicable to replace random gain by a constant amount and to compute
actuarially fair premium for insuring the risk, even if the insurer’s wealth is not a random
function. The consideration is actuarially fair as a function of its expected utility if it
compriscs of a loading factor depending on the insurer’s risk aversion co-efficient
together with the joint distribution of the claims and the random wealth. Consequently, an
insured with wealth w can functionally determine the maximum premium p, he is

prepared to pay for a random loss.
Y.,i=12,3,4,...n or he can compare the variances

2 2 2
0, .0y 0y L0y

n-1

2 2 ap 2 2 2 2 2
.0, 2ifo,” <o, <..<o, <oy

n—1

Then it 1s apparent that the insured prefers the insurance with random loss Y, with the
lowest variance provided E(Y, ) = E(Yz): = (YH ). The maximum premium max P,
the policy holder can afford to pay is obtainable through the application of the utility
functional on expressions (w—Y) and (w—P) and then taking the expectation of the
first. The two expressions of the utility function b() when equated to zero will be the

equilibrium equation. Lienhard (1986); Kaas ct al. (2008) observed that when considering
a random loss Y, the equilibrium equation for the insured becomes.
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E[u(w—Y)]—u(w—Z(P))=0 (n
E[u(w—Y)]:u(w—Z(P)) (2)

where X (P) is the premium the insured is ready to pay. The maximum premium 2. for

which equation (1) holds represents the zero premiums because it is the basis premium
which satisfies equilibrium condition. At equilibrium level, the scheme holder is
indifferent whether or not his risk is insured. The insurer charges minimum premium for
insuring random loss Y and analogous to the insured, the two expressions
E[H(W +P-X )] and u(IW) from the basis for the equilibrium equation for the insurer.

E[u(W+X(P)-Y)]-u(w)=0 (3)
E[u(W+Z(P)—Y)J=u(w) (4)

The value of minimum premium X(P)=X" which satisfies the insurer’s equation is
called zero premium. In equation (3), if the condition X~ <X(P)<X" holds, then the

utility function u(-) of the scheme holder and insurer must increase since utility function
increases with increasing wealth for some class of utility function. Since u(-) is a non-
decreasing function, a risk averse policy holder will prefer a fixed loss such as ordinary
deductible to a random loss having same expected utility. Experts have formulated a few
models to guide how scheme holders taking decisions can select between uncertain
events. If the decision maker steadily chooses among potential random losses Y, then
there exists a utility function u(-) attached to his wealth w such that the insurance
decisions he takes are exactly the same as those resulting from comparing the losses ¥
based on the expectation £ [u(w— Y)] and consequently a complex decision would have
been reduced in intensity by comparison. For the comparison of losses X with Y, the
utility function u(z) and its linear transform au(f)+b,a >0 are equivalent since they
result in the same decision.

3.1 Theorem
If X,Y are random losses, then

E[u(w—X)] < E[u(w— Y)] if E[au(w— X)+b] < E[au(w— Y)+b] (5)
3.1.1 Proof

We note that if u( y) =c+dy forall y, then we have
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(Eu(w+ /1)) = Elc+d(w+ h) =c+d(w+ E(/r)) (6)
E[c' +d(w+ h)] =c+dw+ E(/r)) =u(w+ E(h)) (7)

This means that the policy holder ranks insurance based on his expected outcome. The
attitude of this policy holder is said to be risk-neutral.

It suffices to proof that if E[au(w— X)er] < E[au(w—Y)+b] (8)
Then E[u(w—X)]S E[u(W—Y)] 9

Recall that a twice-differentiable function u(w— v) is convex on an interval (c, d) if and
only if "(w— )= 0 forall (w—yv)in (c.d) (10)

Applying Taylor’s on both sides of mt(w—X)+b = au(w— Y)Jrh, we have

(""’ -V )2 (2)

- I LR T 2 PR |1 — H !
b+awu(b)+ (J(HT?)HC'(!?)<J)+a(1L ”‘}) 1;(/})+(1 > u"‘(h):> (1)
P —_ " |4 — ’1 faY 7 }o— ,‘k.‘ 4 — ,‘E -
a(w ”"1) u(b)Jra(H 2’}‘) zz“"l(h)éa(u ]'} ) ulb)+a (s 2'}) u?(h)= (12)
) — I 4 — X ? ~ 4 — ) ! A4 — 2 ey
(O ”_\') 11(/7)4-7(” 2|'\) u“J(h)éi(u 1')) u(h)+7(H 2')) u("-](h_) (13)

u(W—x)lt(b)Ht[(w'Y)z }1(2)(/5)2 ulw—y) + 1{(1-»:—2!_-;)3 Jum(b) (14)

2!

either, u(w—x)u(b)<u(w—y)u(b)or u((w_x);}f{’;(b)Su[(l“'_}:)ﬁ]u(ﬁ)(b) (15)

2!

u(w=x)u(b)<u(w—r)u(b)=u(w—x)<u(w-y) (16)
now taking mathematical expectations

Eu(w—x)< Eu(w—y) (17)
The implication is that the expectations function b() function is a coherent risk measure

on random losses X,V . In general, it X\ X,, X, X,...X, ,X, is a sequence of random
losses, then it follows that

E[u(w—X1 )]S E[u(w—X2 )]S E[M(W—X3 )]S E[u(w—Xn_1 )1 < E[u(w—X,, )] (18)

The theory of equivalent expected utility could substitute for random gain at a constant
value in order to obtain actuarially fair premium on claims meant to be covered even
when the insurer’s wealth (without the new scheme) is a random function.
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3.2 Utility Function

The function u(.): A — R attaches a value to each possible wealth where 4 is an open
interval and R is a set of real numbers. It is assumed that the gradient function is
increasing that is u’(y)> 0 and concave, where in the relative value of a unit currency
decreases as v increases u"(v)< 0. As with other continuously differentiable functions,
it is assumed that u(y) possesses differential coefficients of all orders at the points at
which it is defined and hence possess Taylor series expansion about a regular point of
analyticity.

u(y+f) will be analytic if it has a Taylor’s series expansion converging to u(y). The
Taylor’s concerns approximation of sufficiently smooth function (1) by polynomials in
a ncighbourhood of a particular level of wealthw. The domain A of monctary outcomes
is cither the whole of real line or the positive real line. We assume that an underwriter has
wealth w. with utility function U(.). We also assume that the insurer has the choice to
cover a risk G . the insurance firm has two choices (t) it may reject the risk based on
underwriting results or it accepts the risk but charges a premium 2 . The two cases above
correspond to the preference order where ¥ is governed by U (W) < l:'(U(Z—GJr H)] 20

Consequently, the condition U (W) = E(U(Z—G + W)) (22)

is valid when the minimum premium 27 is considered. This minimum premium is
characterized in such a way that the underwriter is indifferent between accepting or
rejecting the insurance risk hence the equality conditions is the principle of equivalent
utility and consequently, the zero premium which solves the equation is the indifference
premium. let X =3, (23)

be the zero of the equation above, that is, the indifference premium, then by Jensen’s
incquality

E(U(Z-G+X,))<U(Z, -E(G)+X,) (24)

if U(.) is strictly increasing then X, —-E(G)=0 (25)

hence 2, = E(G) . We infer from Gajura (2010), that an acceptable insurance premium
for any insurance policy is a premium associated to that underwriter with preferences
towards risk and wealth defined by his utility function L() and consequently distinct
underwriters would impose varying premiums based on the underwriting experience and
result for covering the risk G .

Following Arrow (1963);, Pratt (1964); Arrow (1970), underwriters’ or insureds’
behaviour to risk should fall in line with absolute risk aversion. It is assumed that u(y) is
a function of total assets of an insurance firm so that

v =0 either results in total loss or insolvency.
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3.3 Correlation in Mean Variance of Two Random Risks

Let Y, X betwo random risks such that ¥ =cX +d (26)
E(X)=X-xand E(Y)=Y -y, E(X)= 1 E(Y)=u, (27)
2 2
Therefore [_)ﬁ—p&x =y 4 pix’ Ty . —pr&_v (28)
Oy o'\.’ (o

And taking expectation, hence

E{)f _ po-—’x) _ H(}‘l + iy’ 5_;_ “2p T, ﬂ] _

¥ q Ty Oy (29)
E[(Y —E) + i S zpﬂx_v}
Ty ) Ty
2 2 ]2 2 (7}‘: 4 2 2 2
B )+ [E0F — 250 + p* 7 ({2 )+ [EQ0F — 2050 )-
T
(30)
2T H[E(XY )= E(X)E(Y)- E(Y)E(X )+ E£(X)E(Y)]
Oy
E(y_” | x} =B )+ p* D (X ) 7 )20 T (XY )= o 1,) B1)
o, o, Ty
2 2
E(x—pany —o, 1 p et —2p L cov(x,y) (32)
g T, T,
2
E(x—p—YyJ =0, [1+p*|-2p 2 COV (X.Y) (33)
X O-X
COV(X,Y)=(E(XY )~ u, )=c.0,p (34)
2
E(x—p&yJ =0, [1+p* |22 50,07 (35)
o-X O-X
o, +oiyp? =207 p’ =0’y —cy p? =62Y(1—,02) (36)
Setting X =x,Y =y (37)
Then 21, = 1, =0 sothat COV(X.,Y)=0 o, p (38)
If p=1 then E(x - pg—}y] =0 and x— pi_v =0=x= pg—’y (39)
Oy T, Ty
48
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Using equation (39) o, (X—,ux)z POy (Y—,uy) (40)
X — . )

( - Jtl,\):!)o-) anu]lzll)a) (41*)
(2 */"r) Oy Y  Ox

Y=CX+d=pu, +v=Clu, +x)+d (42)

v=Cu, —pu, +d+C, (43)

4, Materials and Methods

In this study, the Taylor’s series technique was adopted in constructing aversion risk co-
efficient as demonstrated in equations 11-16 and equations 44-74.

Following Elabed and Michael (2015), a critical concern of actuarial risk theory is how to
evaluate the risk of the uncertainty in the future value of an insurance portfolio. This
evaluation is usually achievable by modeling the uncertainty in u(.) as a random variable
to which a certain risk measure is applied. The risk measure describes a single value
which is reasonable to provide a sufficient measure of size of the level of risk exposure.
Given a risk functional u(.): 4 —> R, which assigns a wealth to a rational scheme holder
then any of the following relations occurs.

u"(x)<0:u"(x)=0(1):u"(x)>0depending on whether the policy holder is risk averse or
risk neutral or risk loving if his marginal function is less than zero, equal to zero and
greater than zero respectively, where 0(1) is any function that is vanishingly zero.

Following Eeckhoudt et al. (2016); Eeckhoudt et al. (2018), the risk aversion as measured
by risk aversion coefficient is the unwillingness of the insurer to assume risk in an
interval of time irrespective of the nature and volume of the insurance scheme. When the
risk aversion co-efficient increases, the premium which the insured is willing to pay
increases. Therefore, when there is high degree of aversion intensity, the insurer will not
be willing to guarantee coverage. If ¥ is a loss random variable then a(y) may be
inferred as the riskiness of an insurance portfolio or the amount of capital that should be
added to a portfolio with a loss «(y) so that the insurance portfolio can be assessed
acceptable from a risk point of view. An insurer’s sense of judgment to sell an insurance
policy to the insuring public at a premium >, would offer the insurance firm a stochastic
variable profit margin. The probability distribution of the random variable functionally
depends on 2, claim distribution and demand function. The insurance regulation which
assists the underwriter to fix a premium at which a scheme is to be sold is same
regulation which guides to identify and select the best profit distributions and hence
shows the willingness to assume risky policy. The selection of a market premium 2
implies and is implied by selection of a profit distribution. In order to analytically
construct the aversion, certain conditions are required, for instance we assume the
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existence of a continuous risk aversion function @(y) whose values at wealth level y
furnish us a close approximation to the degree of unwillingness of insurers to take up risk
in the interval y — (}-‘ + 1‘) since instantaneous rate (1) is involved. it usually takes the
form of a derivative and limiting process. Let the mean and variance of random loss V' be
L, and o’y respectively. The utility function is characterized as follows as observed in
Klugman et al. (2004); Kaas et al. (2008); Guo et al. (2016):

(1) u(w) is an increasing function of w that is u'(w)>0 where the gradient
function is positive and since insurer or insured prefers more to less.

(ii) u(w) is a concave function of w that is u"(w)< 0 where it is required that the
marginal utility function of u«(w) is a decreasing function of wealth w and
that the utility function u(w) is twice differentiable the reason being that
insured or insurer is risk averse
au(w=X")+b=au|(w-p )+(p,~X") |+ (44)

(iit)  The utility gradient function is not vanishingly zero that is u'(y);t ()(])
otherwise the aversion co-efficient will be unbounded

(iv)  We impose that u(.) necessarily possess derivatives of all orders

It is important that L() must be bounded and sufficiently regular or smooth to justify the
proof of risk aversion

we X =(we gy )+ fo) (45)
Taking the utility of both sides

an(w=2")+b=aul (w-u, ) +(1, —Z‘)}rb (46)
Similarly, (w=Y)=(w= )+ (s, =Y) (47)
aulw=Y)+b=aul(w—u, )+ (1, =Y)|+b (48)
Y =(uy, —¥) = risk neutral since £(Y)=0 (49)

w = wealth or assct of policy holder or insurer

2 =maximum premium
(Z+ o ) =risk premium (50)

L‘(M‘_Y)_(‘},L,_Z’)z L-(“")_}E(Y)—].1,'+Z+ _ 51)
W=, —w+2 =2"—u,
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(Z+J‘5') must satisfy the Eu(w+1_/) =M(W—i’f) (52)

Applying Taylors series expansion of order one to equation (46) and Taylor’s series
expansion of order two to equation (45), we have,

u[(W_,UY)J"(:UY_Z+):|_u(w_:uy)

=u'(w—p, )+

(;JY —Z+) (53)
s —Z+ , n 32
%u' (w—p, )+0(;z3. - )
Au(w—u,) du .
= = 0z, —X7) (54)

(;1, —Z+) d(_,u} -2 )
Where the 0(,uy —Z+) means that the first term neglected 1s of order (;t,. - )

(1, -3)

u[(u-‘—,u}.)+(,u} -2 )]=(ﬂ; -2 )“,(”’_M )+#””(”:_ﬂ")+ (54a)

0(;{Y -2 )2
e

J’_
0! 1!

: (55)

au" (w— g, )(;1} ) +b}
21
au(w—zf)+b =1la u(w—zf)+b = au(w— )+
(56)

au' (w— g, )(,u, -2 )] +b|
Using first order
au(w - Y)+ b= au(w - ,uy)+ au'(u' — Uy )(uy - Y) +
au"(w— g, Npty V) (57)

+b
2

Recall aE[u(w—Y)]+b=au(w—Z+)+b, now taking the mathematical expectation of

left-hand side alone to obtain.
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””(”"_ My )(/“}' - Y): :|+b

CIF.'[M(L-‘.:‘— Y)]+ b=aE u(w— ,uy)+ u'(w— ty Nty =V )+ - 5
Then

aE[u(w—Y)]+b:

aE[u(w—uy )]+aE[u'(w—,uy)(yy _Y)]+aE[u"(W—ﬂY2)(ﬂ; —Y)z}rb

= aE[u(w— Y)]+b =

allu(w — u, )|+ abu'(w— g2, JE(uz, — V)] + aE{

2
‘IE[M(W - Y)] = ‘IE[M(W — Hy )] + a”,(w — Hy )[E(Y) — Hy ] +
au"(w—p, VE(Y = 11, ) . au"(w—p, JE(Y — 11, )’ . an’ (w— g, JE(Y = 1, )
2! 3! 4!

aE[u(wf Y)|= aE[u(n-'f/u} M+ au'(w— 1, )[E(Y)fﬂ) |+ %au"(wf )
[ 0= £GP £ (kv o)) (v = EGI f, (ot an”
(e ) EGW 7, (s

Where u, = J': (v—EG)) £, (v)dv and 1, = '[ (v=£0)) 7,0 )dv =™

i — 0

= I_ (y — F,.‘(_V))2 f(v)dy =’y is the second central moment

(.'E[u(w - Y)] = aE[u(u-‘ — My )] +au '(w — My )[E(Y) — My ] +

(Ht” w— U, )(725' 1 Somf 1 iv ,
5 + 3 A (}L-—l[} )/U_; + Z!au (W_,UY ),U4

an"(w— 1, Jos N

2

al:‘[u(w — Y)] = a!:‘[u(n-‘ — 4, )]+ au'(w — A, )[[:'(Y)— £, ]+

3

4
oy Ly 1,0 ) " !
au"(w— 1) ;, bt au™ (w— pu Ha 3
3! e T "ot
3! L !

s~ V)= aElulo - o, )+ o g, YY) - g, |+ O HNT

. (m"'(w—/..fj );/, A g ("""—,Uy )72
3 7,41

Where y, and y, are co-efficient of skewness and kurtosis
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au"(w— g, Y,

alfu(w =)= ablulw— g, )|+ aw'Go— gy Nty =2, )]+ 5 (66)
aE[u(w—Y)]= aEfu(w— u, )]+ a“(“;“’)’“] (67)
alfu(w=7)]= aulw— 4, )]+M (68)
Recall u(w=3")=u(w—p, )+u'(w=p, )11, - X") (69)
u(w— g )+“(”_2””)’” (g )l (e )y X )= (70)
u’(u-'—y,-)(;:,-—?)w (71)
s o
= py =2 alwu,) (73)

It is expected that the variance will be infinitesimally small to be extent that «#, — 0 and
consequently 2.~ = z,. The policy holder’s risk premium for small actuarially neutral risk
Y, 1s the product of half of the aversion a(y) and the volatility term g,

-+ _ ![3””(""’*#})
From equation (71), 2(2 —H ){_ “'(n'—,u ) }
;

According to Pratt (1964), the aversion to risk is twice the risk premium per unit of
variance for all infinitesimal risk. The cxprcssion% represents the volatility term

because it is an incoherent risk measure of variability while its coefficient term

{_ w'(w—p, )

f( J defines the risk aversion coefficient in the form
u'lw—p,

u"(w—u,) (74)

alw ) o u'(w—p,)

Following Szpiro (1986); Eisenhauer and Halek (1999); Kaas et al. (2008); Chiappori and
Paiella, (2011); Zhang (2017), we set g, =0. Then the percentage change in marginal
utility per unit of outcome space:
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dw

)y, [!()J
Then a(w) _ _H"(W _ dwldw) E(“ (H')) _d ( du J u'(w) (75)

=——-1In =
dw

)
u'(w) du ' (w) dw

dw

In Elabed and Michael (2015); Ogungbenle (2019); Ogungbenle and lhedioha (2019), we
sce that the cocfficient of risk aversion defines the inverse quotient of second order
derivative of utility function to the first order derivative of utility function.
a(w) . . , . . ‘ . .
A(w)=—— s the relative aversion to risk. Under aversion to risk dynamics, a(w) is
w

often positive, however it may assume zero and negative value for risk—neutral and risk-
loving insurance agent.

5. Discussion of Results
The contributions of this paper are based on the evalution of the following key result
areas which are obtained by considering the effect of aversion risk utility model.

(i) Suppose an insurer is given the aversion co-efficient but he is intended is to obtain the
corresponding utility function, then we solve the equation

du If +a w)ﬂ =0
dw dw
u(<)=0 (76)

W' (&) =1
Then following Ogungbenle and Thedioha (2019),

W Jale)do

u(w)= IcJ ¢ dT (76a)

(ii) Suppose the risk neutrality w=£Ay+¢ is a linear transformation in equation (75)
where & and « are real constants, then

da_dady lda_ d’a_ldady 1 da

= = = = 76b
dw dvdw kdw dw kdidw K dw (760)
d*a _ldzaﬂ_idza (760)
aw*  kdy’ dw k¥ dw’
) 1 d*a d*a
_uw) R aw _ dw
a(w)— () = Tda = da (76d)
k dw dw
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Under positive linear transformation falling in line with Von Neumann-Morgenstern
utility functional, the aversion does not depend on k. The changes in actuarial risk
aversion with changing level of wealth is thus linked to the boundedness of the utility
function. The decision of the insured is to choose the value & invested in risky insurance
portfolio in order to maximize the function.

E[u(w)]=E[u(ky+a)]=v(k) (760)

If 0<k <awhere the policy is viable with rate of return ¢ then in the transformation
above,

a=a(1+6)=E[u(w)]=E[u(ky+a(1+0))] (761)
L ()= ] ()| = ] v (i) | ] o) (T60)
j—];v(k)zE{j—v;u(w)}=E{yzj—v;u(w)} 6
A (0)= | o) =] L) (76

Conscquently, if the expected utility is maximized, then apparently, the insured will tend
to be risk-averse to small risks in w provided that the utility functional wu(v) remains

concave at w such that E(u(y)) <U (E(y)) (76))
(iii) Again, substituting equation (75) in (71), we have 2" = u, +%a(w‘, y,.) (77)

This is the estimated maximum premium the insured can pay. This equation means that
u(y) must have a continuous and bounded third order derivative for all risk neutral. The

risk premium is proportional to the variance of its random loss. The variance thus secems
to be a good measurc of the degree of an insurable risk. This observation induces the
application of mean—variance technique for evaluating risk behavior under uncertainty.
Under the mean-variance model, it is assumed that individual risk behavior is a function
of the mecan and variance of the underlying risks. Furthermore, the validity of these
models depends on the precision of the approximation in the aversion to risk co-efficient
which appears accurate given that the risk is infinitesimally small. The risk premium
corresponding to a large risk depend on the other moment of the distribution of the risk
but not just on its mean and variance hence we examine the intensity of symmetry of Y
about its mean in obtaining the risk premium. From equation (65), the degree of skewness
could also affect the desirability of a risk and consequently two risks with the same mean
and variance but the one with a distribution that is skewed to the right and the other with
a distribution that is skewed to the left should not be expected to have the same risk
premium.
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v) Suppose the risk premium increases with the size of the risk and the variance
is proportional to the squarc of this size for small risk. Consequently if
Y =a#f and E(E)): 0 the parameter « defines the magnitude of the risk and
hence as a — 0 the risk tends infinitesimally small to zero. As the risk

premium is a function of the size of the risk, the risk premium function 7 (e)

is expected to increase in @ and hence the functional form connecting the risk
premium 7z to the magnitude ¢ of the risk can be computed. Because the
variance

Var(Y)=a’Var(0) (78)

We can see that

3 " g 7 2V . 0 ’n o
(H) —Z')Z JL;u, (u i) _| oV {, )u (w—1z,) _2(a) (79)
u'(w—pt, ) 2u' (w—pt, )

The risk premium is approximately proportional to the square of the size of the risk. It is
apparent that 7 (e ) tends zero as « approaches zero

dr(a) aVar(0)u"(w—pu,)

80

da w'(w—pt,) (50)

lim aV“"(H)””(W_'U})7:0 (81)
a0 u'(w—p, )

d’z(a) Var(0)u"(w-u,) (82)

o

f
da ' (w—pty )
Considering the marginal second derivative, a small zero-mean risk has no effect on the
payoff of risk averse insurance agents.

6. Conclusion

The problem of evaluating proper aversion co-efficient in actuarial risk has received
considerable attention with a considerable appeal to actuaries interested in applying
numerical techniques and probability theory to solving actuarial risk aversion problems.
The underwritten risk is the uncertainty resulting from an insurance scheme associated
with random risks affecting underwriting results of insurance that could simultaneously
impact on premium. In this paper, we have succinctly discussed utility function and its
actuarial consequences on the construction and evolution of aversion co-efficient serving
as a working tool in actuarial literature. This is based on the general reasoning of
actuarial computations which may account for uncertainties and other risk criteria about
underwriters and insured together with their utility preferences. For any reasonable
actuarial risk aversion to be constructed, the utility functions should be modelled to fall in
line with risk preferences. From our arguments, the theory of aversion can be applied
either by the scheme holder who wishes to compute the maximum premium he can
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affordably pay so as to secure full cover or by the underwriter to determine the minimum
premium to charge the scheme holder. The findings on aversion apply to the evaluation
of risk profile trajectories guiding the insurer to accept or reject volatile schemes which
was generated under conventional deterministic frame work. The degree of risk exposure
has a pervasive impact on the profitability level of insurance underwriting and could
assume a major source of generating viral insolvency of financial losses. All risk
mitigations arc geared towards boosting the insurance profit, increasing the market share
and ensuring that the financial security is required by both risk managers and insured to
identify cvaluate risk aversion of risk depending on the efficiency of operations and the
competitiveness of the market. Risk aversion is evaluated as a consequence of interplay
of key parameters such as the probability of deviation from the intended purpose for
which it is modeled. It is believed in insurance practice, that the elimination of the effect
of risk factor subsequently may offer optimal financial stability. Insurance companies are
therefore encouraged to deploy potent risk management assessment tools which will
mitigate the overall measures of insurance business risk. Risk aversion assessment
dynamics involves defined sequence of algorithms which will ensure adequate impact on
risk measurement comprising analysis of risk data, numerical computation of risk
probabilities, identifying the intensity and amount of risk. The loss of premium income
from insurance policy and a sharp reduction in risk-free profit evolves from random
strategics of the insurance firms when the insured is wrongly underwritten and accepted.
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