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Abstract: The purpose of this study is to enable us to obtain mean losses of an
insured risk by means of the operational behaviour of density function with
deductible modifications and then compare the mean severities under exponentially
and log-normally distributed arbitrary policy in a cost per loss and cost per
pavment circumstances. The mean losses model thus obtained for an arbitrary
policy in general insurance under deductible coverage modifications is meant to
reduce the number and magnitude of claims received. Furthermore, the mean
losses are then used to compute premium numerically, based on the applied
deductible. Rate relativity data on deductible was obtained through a non-life
msurance agent operating in property insurance market in Lagos. The result show
that despite log-normal severity distribution has a thicker tail than the exponential
distribution, its cost per loss pavment (x,) is correspondingly lower in value than
the values of exponential mean [oss that is (V.), ... <Y )opena - While the cost per
payment is uniformly constant throughout the entire domain of definition for the
deductible under exponential distribution, the insurver experiences higher cost per
pavment than expected in the subinterval 45<D <1 under lognormal regime. It is,
therefore, recommended that the insurer is advised to apply deductible in this
subdomain to disapprove nuisance claims and control the problem of moral
hazard.

Keywords: Cost per loss; Cost per payment; Deductible; Exponential distribution;
Log-normal distribution

1. Introduction

In general insurance underwriting practice, underwriting line of business is often
restricted by a deductible clause. The idea about a deductible being introduced into the
policy contract and the resulting pricing architecture with respect to insurance premium
is of fundamental significance in the underwriting sector. The correct computation of
premium 18 important because inappropriate level of pricing may lead to a significant
loss or that the underwriter may be edged out of business. Therefore, it generally
behoves the underwriter to ascertain a technique of computing the premium in such a
way to integrate deductible clause. The rationale behind introducing deductible is
essentially to minimize the claim handling charges by eliminating cover for frequent
1
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nuisance small claims and moreover put in place some measures in favour of scheme
holder to prevent claims by means of a bounded level of sharing in the cost of claims.
Generally speaking, the fact that a deductible will eventually force the scheme holder to
receive a part indemnity in future gives an advantage to minimize the impact of loss so
that the liability of both the insured and the insurer are minimized. For small losses, it
is probable that the loss administrative charges will be more than the actual losses,
consequently, the underwriter would expect and enforce that the scheme holder pays it.
The insured may choose to seek high deductible value to arrive at a lower premium
since lower pricing would be preferable by the scheme holder. Even though the indemnity
value of the scheme holder may be minimized in future by the chosen level of deductible,
it is certain that the policyholder’s retention level is greater than zero and consequently,
loss 1s avoided. In general insurance, the maximum accumulated amount of losses
retained by the insured under deductible policy modifications is usually set as part of the
terms of the policy conditions thus specifying the amount which the insured is responsible
for, in accordance with the insured peril. When an insured event occurs, the value of the
deductible is subsequently defrayed from the claim payment. The higher the deductible,
the lower is the premium payable on the insurance policy thus establishing an inverse
relationship between premium and deductible. In this work, we investigate the effect of
payment per loss and payment per payment on two loss distributions.

2. Literature Review

Claims modelling is a core insurance issue because a good knowledge of loss distribution is
the basis of underwriting decisions taken in insurance sector in respect of premiwms,
expected profit, reserve and re-insurance arrangement. Insurers usually keep record of data
base bearing information on deductibles, policies and claims applicable for ratemaking
purposes. We observe in Pacakova & Brebera (2015) and Zacaj et al. (2015) that the

arising from insurance
data is very difficult. However,

Zacaj et al. (2015), Bakar et al. (2015), we also observe that claim generating processes is
essentially tedious under social-

Raschke (2019), medium size claim could be subject of log-normal regime influenced by
base distribution function £, (x)and base survival distribution S, (x)and resulting in a

random risk. In
to
s therefore needed to summarize
and
interpret claim data 1s a
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amounts in

general insurance business as samples from definite but usually heavy tailed probability
distributions. In view of Tse (2009), it is observed that as a probability based actuarial
model for severity analysis, the probability of financial losses experienced by scheme
holders and indemnified by the insurance firm should be clearly understood under the
contract setting. Analytical actuarial distributions are applied to assess the cost to the
extent that such distributions are positively skewed having high probability densities on
the right tails. Since the distributions are specifically meant to analyze losses, they are
tagged loss distribution models. Claims modeling remain the basis of information
contents for underwriting firms to obtain estimate of premium, loadings, reserves, profits
and capital required to ascertain overall profitability and to appraise the effect of
deductible. Although, it is reasonable to fit probability distribution to claims data,
analytical probability distributions are rather powerful techniques to employ in analyzing
claims data and consequently, there is need to construct models which can be used to
estimate the distribution of claims under exponentially and log-normally distributed
actuarial data involving deductible clauses. For the purpose of this work, we are
concerned with analysis of lognormal and exponential distributions of claims estimation
for policies having deductible conditions. In general insurance business, claims data are
usually skewed to the right tail and any distribution showing this type of behavior is
sufficient for the analysis of severities (Sakthivel & Rajitha, 2017). The choice of these
distributions is based on my experience and prior knowledge of claims data in the insurance
underwriting as a professional underwriter. An important characteristic of a probability
distribution to meet the requirements of a claims model is that it should be able to fit the
data. It is assumed that there are no points of truncation in the data; the first moment of
the distribution should at least exist. Claim modeling is therefore necessary because the
construction of adequate interpretable loss models serves as the foundation of critical
underwriting decisions taken in relation to premium and claims assessment to ascertain
profitability.

3. Basic Derivations in General Insurance Business

Lect g(Y) be the amount of an insurance loss for ¥, S be the sum insured and V be the

B

r;(Y)—mjn[S;;z};J (1)
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£(Y) =min[s;;xﬂ

In line with the views of Tse (2009); Ogungbenle et al. (2020);
Ogungbenle (2021), the cost per loss is given as ¥ =(¥ - D),

B[ AD))-

Sy (v)dy

O t—

F;/LEJ',) =k (.V + D)

E(y')=E[(Y-D)_|=

(y=D) 1 (v)dv

Dty § 8

(1-F (¥))ay

E(r)-#(r-D) ]
E[(v-D), |~ B()-£[(v nD)]

Let the cost per payment ¥ =(Y-D) /Y >D
s b (v+D)-F, (D)
S
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Consequently, the mean excess loss &, (D)
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is given as

D)==- 13
(D)= (13
I, (s)as
(D)=2—w— 14
o (0) =2 (14
& (D)Sy(D)=E(Y)-E[(Y AD)] (15)
The loss elimination ratio LER is usually obtained as the fraction of the
expected loss that the underwriter would not pay because of deductible D
CE(N)-£[(r-D). | E[(YAD)]
LER = = (16)
E(Y) E(Y)
For the exponential distribution
D
LER=1-¢ ¢, (17)
The indicated deductible relativity REL(D) is the ratio of the payment per
loss with a deductible D to the payment per loss with the base deductible D,
!( y— D) f}, JS dy
REL(D)=" (18)
!(}’ D )f) JS dy
D

REL(D) - % - _ (19)

(20)
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Let 7 (»), S, (»), £ ()
function respectively where ¥ n(v)
. Then if £ [7;(}’)] exists,
the risk premium 7, is obtained as P, :E[n ( y):l Where deductible is not
applicable, then 7(v)= yand provided E(y)exists, then B, =FE(y).
Let y =¢". The distribution of yis called lognormal distribution. Klugman et al.
log, s ,{[) s | j(lug;y:_uJ \d (21)
= e =0 [y
v OV 2T

(2004) defines CDF as F(s)=@ {(
o

log, s —
where s >0, o>0and s < Rrcal number and @[(&7!)} is thc standard
o
normal distribution function.
claims, d to many loss

decisions.
intcgrating a dcductible amount p

o-
Then r}(y)p ()= max (0;y— p) and we have £, =E [17 (v)] becomes
Fa(p)=P=E(r.p) = Fu(p)=px(5:(r)) (22)
P=E(y.p)=F(p)-px(S,(p)) (23)
*E(_'.‘,p)Z—P+PR(p)pr(SY (p)) (24)
E(y.p)=P=P.(p)+px(S,(p)) (25)
But by definition, E(Y,y)

E(Y,u)= ifsf'(s)ds +uS, (u) (26)
E(Y.0)~ [ (s)s+ 5, (p) 27)
[ (s)ts + S, (9) = PP, (0)+ px(5, (0)) (28)
[ (syis = P=P, (o) 29)




TSSN 2664-3413 (Print) 2664-3421 (Onling)
Daffodil International University Journal of Business and Entrepreneurship. Vol. 13, No. 2, PP. 1-18, December, 2020

H—U—z | —u-c I -
o () _p_ gy )= Im[%ﬂ p{lm[%]} (30)

3.1 Main Results: Theorem 1

Proof

(log s;t)} | - :
F(s)=® = = e 27 dy
( ) { o }I:Jym (31)

+Z
+
4 bl

The function then ?;(_v) =y=e ?

apply W
I {,_m{w—#—fﬂ_p{l_m{w}} 2)
o ag
taking P = PR
B(p)=P—E(y.p) (33)
F.(p)=E(v)-E(y.p) (34)
E(y)=¢""2 (35)
E[(Yny)]=e" : o { log, x=p=no. ] +3" (1-F, ()} (36)
o
E[(Y A y)”:| P cr{ log, x=p=no J "S- () (37)
ag
When n =1, we have
E(r)=¢"> (38)
& _ 2
EI:(Y/\:V)]:C” 2 {@[M}}.}y{l_f’y (1)} (39)
o
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EI:(Y . )’)] _ ewT {(D (MH + 38, (J’) (40)
o
Consequently, as v — p, we have
Iu+oi l ) — — 2
E[(YAp)]ze 2 G)EOEHOO-#GIlJrP{lFT(p)} (41
“? log, x—pu-o’
E[(Yry)]=e 2 {CD {%Hﬂf&- (») (42)
7, o0& pmuzo (43)
o
Z2 = w (44)
o
then F, (2,) - @(M} and £ (2,) m[lgfw] 4s)
o o
E[(Ynp)]=e" > cb[—]ogc pruzo ]] + le - cp[Lg@ p _"J} (46)
o ‘ l o
P(p)=¢" {e"ﬁq{—log“ pp-g J " p{l@(—log“ e }] (47)
o o
P (p) ST em'zq{logﬁ p—f—a JP{] (D[log(, p—,u}} (48)
o o

work is given as follows

Pp)=c"" [] _(D(log?p_y_f H _P{' _(D(IO& p_ﬂ]} (49)
a (o2




3.2 Theorem 2

For the exponential distribution,

PREAP()NENTIAL ( p) — 9 _

Proof

E(Y" ) = 9”F(;1+l);n >—1

if nis an integer, E(Y” ) ="n!
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if 7 > —1is an integer, E|:(Y/\ y)”] = H"n.!F{n + l;‘;] +y'e? n>-1,

Ifn=1

if nis an integer, E(Y) =6
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=

P (p)=0- Qp Iz" edz—pe? (60)
o)
0

4, Materials and Methods

|"3

lling process is
distributions whose
A random
variable ¥ is said to be log-
[{log, 2= ]
. 1T 1 —F
given by g, (y) = —e (61)

oN2mr Z

’Vllog z—) —‘

jL,
o pZ (62)
” J‘[L—;llﬁz\J [;17:6 ] 0 2u+2
and E(v7) =" p(ry =L p(re) - ) 63
A ,’[1\ 1(71 j
Var(}’) = e(zﬂl ) —{e‘ 2 1]
(64)

We obsetve that # and o y but
-normally distributed risk
with deductible conditions is defined by

)

(YL>=J‘(}'7D) r(, )dw J.mgy( dmfIDgY )a’y

T D (65)
(1) = [ vg, (¥)dv — DS, (D)
z (66)

| (log, y—a)" |

where I yg, by dy I 2’ dy—e
Soor

N

(67)

S, (D)= P{Z > log;’ﬂ

(68)

From the definition of log-normal distribution, we observe that
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& (J-)_%(i@"gw#)J_Lxlxmf[i(“’gef"ﬂ)J
dy o2 oy o

(69)
lulﬂ =)
Lo -le 10g v u) e
d)(y): \/Teﬁ ds; | —— —e > ds
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bls) d ") 4 _
1(5)= | £()aven ’;E J J Zetns)ar e 60.) ot
0
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(u(s).9) S (s o
N e >
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(72)
v >0, location g andscalec >0
1
and therefore, J‘g5 s s = M
e g (73)
probability- eral insurance claims analysis.
Schlesinger (1985) & Yi(2020) claim

s managcrs to have a good
knowledge of claims data.

5. Mean Severity under Exponential and Log-normal Distributions
5.1 Data Analysis

In general insurance practice, data on deductibles

c
-life insurance ageni operating in property
lowing
of Tse (2009) by considering an
insured risk ¥
D under exponential distributions 0.1 <D <1,Y ~ EX] P(af),ox = land severity when log-

. ) |
normally distributed as ¥ ~ LN(;_J, o ),assume,,u = —5,02 =1
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5.2 Exponential Distribution

—ab —ob &y (D)
S}- D)=e¢ 8y D)= cae ’HY V)=
(D) (D) (¥) 5, (D) .
(v)=((v-015) )= T e dv=e"" =0.8607,
0.15 (75)
015 (K,) _ _ - —
S, (D)=e"" =0.86071 = 5 (0)" (V) = Jo'e dv=1 76)

<Yp> = .[gl, (¥)dy =1, henee, we can sce that (¥, ) < <Yp>that is the cost per loss amount
0

LE) and loss elimination
ratio (LER) are as given below

1 Y)—{Y,
LE() = L =(0) =1=(7,) LR () = T @
Table 1: Computed Values of D and LER for Exponentially Distributed Claim
DEDUCTIBLE Soot
DOMAIN ff)%s I;R yy LER CHANGE
0.1<D<1 (,) (%) INLER
L
0.1 0.904837 0.095163 0.095163 0.0952
0.15 0.860708 0.139292 0.139292 0.0441
0.2 0.818731 0.181269 0.181269 0.042
0.25 0.778801 0.221199 0.221199 0.0399
0.3 0.740818 0.239182 0.259182 0.038
0.35 0.704688 0.295312 0.295312 0.0361
0.4 0.67032  0.32968 0.32968  0.0344
0.45 0.637628 0.362372 0.362372 0.0327
0.5 0.606531 0.393469 0.393469 0.0311
0.55 0.57695  0.42305 042305  0.0296
0.6 0.548812 0.451188 0.451188 0.0281
0.65 0.522046 0.477954 0477954 0.0268
0.7 0.496585 0.503415 0.503415 0.0255
0.75 0.472367 0.527633 0.527633 0.0242
0.8 0.449329 0.550671 0.550671 0.023
0.85 0.427415 0.572585 0.572585 0.0219
0.9 0.40657 0.59343  0.59343  0.0208
0.95 0.386741 0.613259 0.613259 0.0198
1 0.367879 0.632121 0.632121 0.0189

Source: Author’s Computation
13




TSSN 2664-3413 (Print) 2664-3421 (Onling)
Daffodil [nternational University Journal of Business and Entrepreneurship, Vol. 13, No. 2, PP. 1-18, December, 2020

5.3 Lognormal Distribution

o

(V.)=[(v=-D)g, (y)dy= E}gy (v)dv- i Dg, (v)dy =

D
m 78
[ ve, (v)dv—DsS, (D) 78)
D
7 i i“ng'" 'l’_#f:‘ [”2+ ,}]1-(1,"111 D-p-o* )]
1 I — £ | ’

ver()dy =) —=—=e 7 dv=e ' )
i r () ia Nor: .
S, (D)=Pr| z > 08X K
} (80)

TABLE 2: Computed Values of D and Log-normally Distributed Cost Per Loss
2 3 4 5

3 ] 7 § 9

00 2302585093 1802583003 1802385003 2802585093 0.99746  0.00254 09642  0.90104
015 -LBOTIINS 1307119985 1397119985 2367119985 099176 000824 09188 0.85394
0.2 -1.609437912 -1.109437912 -1.109437912 -2.100437912 09825 0.0173 0.8661 0.80928
1,25 -1.386294361 -(1.§86294361 -(.586294361 -1.886294361 0.9703 0.0297 0.8122 0.76725
03 1203972804 0703972804 0703972804  -LT03972R04 09538 00442 07592 072804
035 (1049822124 DSH9R2124 0549822124 1549822124 09393 00607 07085 0.691325
04 -0916200732 0416200732 0416290732 1416290732 09215 00783 0.6613  0.65698
045 098507696 0298507696 -0.298507696 120850769 0903 0097 06172 062526
05 0693147181 0193147181 0193147181 -LI03147181 08836 00164 05765 05953
0.55 0597837001 0097837001 0097837001 -L.0STEITO0N 0864 0136 05391 0.567495
06 051085624 0010825624 0010825624 -LOI0R2S624 0844 0036 05044 054136
0.65  -0430782916 0.069217054 0.069217084 -0.930782916 0.8241 0.1759 04723 0.517105
07 0356674044 0143325056 0143325056 0.856674944 08042 01958 04431 0.49403
0,75 -0.287682072 0212317928 0212317928 -0.787682072 0.7847 0.2153 0416 0.4727
0.8 -0.223143551 0.276856449 0.276836449 -0.723143551 0.7631 0.2349 0.3909 0.45238
.85 -0.162518929 0337451071 0.337481071 -0.662518929 0.7464 0.2536 0.3681 0.433515
09 0103360516 0394639484 039463948  0.603360516 07273 02727 03464 041554
095 0051293294 0448706706 0448706706 0.551203294 07091 02909 03268 039864
10 05 05 0.3 06915 03085 03085 0383

Source: Author’s Computation
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COLUMN 1=0.1= D <1;COLUMN 2 =log, D; COLUMN3 =log, D— u;

COLUMN4 = (log, D — )
¢ 1)
log, D~ o rs¥
COLUMN 5= (Og‘—'u) —o:COLUMNG = j 1 252 d}’
i D Gm (82)
(IEUMN?—¢{Q%££tiﬂ—J}KIEUMN8—P{?>£E%EEEQ]
g a
(83)
(7,)
COLUMN9 - <(}IL )>;<)7P >h)g—nnr'nm[ - S (D)
' (84)
(1) ={(y-015) )= [ edy=e™" =0.86071 83)
0.13
D over

which it has been defined, it was revealed that (Y,) <<Yp>,that is the cost per

6 . Discussion of Results
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y proportional to the
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fraction of the losses eliminated to

KYP >| =1 is uniform throughout
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underwriter is therefore advised
because the

ductible type,

ilitics and maintain solvency

will decrease

-tailed lines of business. Comparing mean
values in T

(¥,) column is observed
to be correspon

Y) <(1)
< L/ \og—normal L Iexponential

7. Conclusion
We have established a clear

of scverity-
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analysis of insurance coverage. z,an

present as A(z). The expected payment per loss will then be jh(z)dFZ (z) while the

0
m (6") 5
mle)

where ¢ h(zj.). The

k=1

estimation of severity of insurance
claims and well-matched cash in-flow and cash out-flows is an advantage for the

Specifically, the paper focuses exponentially and

log- mn a cost per loss and cost per payment events
with deductible clauses.

-normal and

insurance statement of mean severity problem,

ty charges which, by cxtension, may

(Y;) of the approximating

distribution to fall in Bearing that it is

compute the mean severities analytically or numerically. These results assist in obtaining
the appro

severity, t An underwriter’s operating
fir

to be
underw
models

constant re-
deductibles are integrated need to

17




TSSN 2664-3413 (Print) 2664-3421 (Onling)
Daffodil [nternational University Journal of Business and Entrepreneurship, Vol. 13, No. 2, PP. 1-18, December, 2020

to make informed financial
decisions to e

with claims reported such as cause of loss, premium and deductible could be spelt out
based on
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