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Abstract :The ratio, product, chain ratio, chain product, chain regression and ratio-cum 

product estimators have been considered by Chand (1975), Kiregyera (1980, 1984), 

Upadhyaya et. al. (1990, 1992), Srivastava et. al. (1990), Prasad et. al. (1992), Sahoo and 

Sahoo (1993), Singh (1993). Most of them discussed these estimators along with their first 

order bias and mean square error. In this paper, we have tried to find out the second order 

biases and mean square errors of these estimators based on simple random sampling. Finally, 

we have compared the performance of these estimators with some numerical illustration.s. 

 
1. Introduction 

 

Let U = (U1 ,U 2 ,......,U i , ....... ,U N ) denote a finite population of   N distinct and 
 

 

identifiable units. For estimating the population mean Y of a study variable Y , let us consider X 
a an auxiliary variable that is correlated with study variable Y, taking the corresponding values of 

the units. Further let Yi be the unknown real variable of Y and X i be the known variable value 

of X associated with U . Let a sample of size n be drawn from this population using simple 

random sampling without replacement (SRSWOR) and yi    (i =1, 2,..., n) are the values of the 

study variable and auxiliary variable respectively for the i -th units of the sample. 

2. Some Estimators in Simple Random Sampling 

 

For estimating the population mean of Y, the conventional ratio estimator of the population mean 

Y of Y is given by 
 

t1s 
= y 

X
 

x 
 

1 n 1 n 
 

  

(1.1) 

Where y = 
n 
 yi and x = 

n 
 xi 

( the notation 's' is used to represent simple random 
i=1 i=1 
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sampling). 

 

The classical product type estimator is given by 

t2s 

 
 

= y 
x 

X 
(1.2) 

 

We have from the estimator of Srivastava (1967), 

 X 


 t3s  = y 
x 

 
 

 

 
(1.3) 

  
 

Where is a constant suitably chosen by minimizing MSE of t3s . For  = 1, t3s is the same as 

conventional ratio estimator whereas for 

estimator. 

 = −1 , it becomes conventional product type 

Again for estimating the population mean of Y, we have from Walsh (1970)'s estimator as 

t = y[ X {x + (1 − X )−1 ] (1.4) 
 

Where  is the constant suitably chosen by minimizing mean square error of the estimator t4s . 
 

3. First Order Biases and Mean Squared Errors 

 
The first order biases and mean squared error (MSE) of the estimators 

respectively as 

 

t1s and 

 

t2s are given 

Bias(t ) = Y 
 1 

− 
 

 
 

1 (C 2 − C C ) 
 

 

(2.1) 
1s  

 
 x x y 

 
 

 Bias(t ) = Y 
 1 

− 
 

 
 

1 
C C 

 
 

 (2.2) 

 

 

 
and 

2 s 

 

 

 

MSE(t 

 
 

 
1s ) = Y 

 x 
 

 

2  1 
 

 

y 

 

 
1 (C 2 

 
y 

 

 
+ C 2 

 

− 2Cx Cy  
 

 

 

 

(2.3) 

 

 MSE(t ) = Y 2 
 1 

− 
 

 
 

1 (C 2 + C 2 + 2C C )
 

 
 

 (2.4) 
2s  

 
 y x 

 
x y  

 

n N 

n N 

N 
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Where is the correlation coefficient between Y and X , Cy = 

S y 

       and 
Y 

Cx  = 
X

 
 

are the 

coefficient of variations of the study variable and the auxiliary variable respectively. 

First order biases and mean squared error (MSE) of the estimator t3s are given respectively 

Bias(t 
 

 

) = 
Y  1 

−
 

 
  

1 ( 2C 2 − 2C C 
 

 

) and (2.5) 

3s   x x     y 

2  n  
 

 MSE(t ) = Y 2 
 1 

− 
1 (C 2 +  2C 2 − 2C C )

 
 

 
  

 (2.6) 
3s   y x 

  
x y  

 

Cy 

By minimizing MSE(t3s ) , the optimum value of is obtained as  0 =  
x 

and the 

expression for the bias and MSE of t3s , for the optimum value of is given respectively by 

Bias(t3s )opt 

 
 

= 
Y  1 

−
 

2  n 

1 
 2C 

 
y 

 
(2.7) 

 

MSE(t   ) = 
 1 

− 
1 

S 2 (1 −  2 )

 

 
  

 (2.8) 
3s   opt   y  

   
 

The expression for the bias and MSE of 

respectively as 

t4s to the  first  order  of approximation  are given 

Bias(t ) = Y 
 1 

− 
1 ( 2C 2 − C C ) 

 

 
  

(2.9) 
4 s   x x y 

  
 

and 

 
MSE(t 

 
) = Y 2 

 1 
− 

1 (C 2 +  2C 2 − 2C C )
 

 

 
  

 

 
 (2.10) 

4s   y x 

  
x y  

 

Cy 

By minimizing MSE(t4s ) , the optimum value of  is obtained as  0 =  
x 

and the 

expression for the bias and MSE of t4s , for the optimum value of  are given respectively by 

Bias(t4s )opt   = 0 and (2.11) 

C 

C 
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 n N 

 

MSE(t   ) = 
 1 

− 
1 

S 2 (1 −  2 )

 

 
  

 (2.12) 
4s    opt   y  

   
 

We observed that for the optimum cases the biases of the estimators are the difference and the 

MSE of t3s and t4s   are same. It is observed that the mean squared errors of the estimators t3s and 

t4s are always less than t1s and t2s . But the estimators t3s and t4s have the same variance. To 

find the most efficient estimator among t3s and t4s , we have tried to find their second order biases 

and mean squared errors. 

 

4. Second Order Biases and Mean Squared Errors 

 

Now we have discussed the bias and MSE of the given estimators up to the second order of 

approximation under simple random sampling without replacement (SRSWOR). 

Let us define,  y = 

 
 

y − Y 
    and 
Y 

 x = 
x − X 

X 

 

then E( x ) = E( y ) = 0 

Before obtaining the bias and MSE of the estimator up to the second order approximation we first 

discuss the following lemmas. 

 
 

Lemma 3.1 
 

For SRSWOR at both the phases, we have 
 

 
(i) 

 

 
(ii) 

V (y) = E{(y)2} = 

 
V (x) = E{(x)2} = 

 

 

N − n 1 
C  = L C 

N − 1 n 
02  1    02 

 
N − n 1 

C  = L C 
N − 1 n 

20  1    20 

 
N − n 1 

 
 

(iii) COV (xy) = E(xy) = 

 
(N − n) 1 

N − 1 n 
C11 = L1C11 

Where L1 = 
 

 

(N − 1) n 
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3    31 4     20    11 

3 C ) 

1s 

2 

 

Lemma 3.2 

 

(i) 

 
 
E(x 

 
 
2y) = 

 

(N − n)(N − 2n) 

(N − 1)(N − 2) 

 

 
1 

C  = L C 
n

2 21  2     21 

 

 
(ii) E(x 3 ) = 

(N − n)(N − 2n) 

(N − 1)(N − 2) 

 
1 

C  = L C 
n

2 30  2     30 

 

 
Where L2 = 

(N − n)(N − 2n) 1 
 

 

(N − 1)(N − 2) n 2 
 

Lemma 3.3 
 

(i) E(x 3y) = L C + 3L C C 
 

(ii)  E(x 4 ) = L C + 3L C 2 
3     40 4     20 

 

(iii)  E(x 2y 2 ) = L C + L4 (C20 C02     11 

 

 
Where L3 = 

(N − n)(N 2 + N − 6nN + 6n2 ) 1 

(N − 1)(N − 2)(N − 3) n3 
 

 
and L4 = 

N (N − n)(N − n − 1)(n − 1) 1 
 

 

(N − 1)(N − 2)(N − 3) n3 
 

Proof of these lemma are straight forward by using SRSWOR. 

We re-write t1s as 

 
 

t1s 
= y 

X
 

x 
= Y (1 + y)(1 + x)−1 

 (t − Y ) = Y y − x − xy + x 2 + x 2y + x 3y − x 3 + x 4 + ......  
 

Taking expectation up to second order approximation, we have 
E(t1d − Y ) = Y E(x ) − E(xy) + E(x y) + E(x y) − E(x ) + E(x ) 

         2 2 3 3 4 

22 
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1 11 

− C 

 

Using the lemmas of (4.1), (4.2) and (4.3) we get the following expression for the bias of t1s up to 

the second order of approximation. 
Bias (t ) = Y L C − L C   + L C − L C − 3L C C   − L C + L C + 3L C 2  

2  1s 1  20 1   11 2  21 2  30 4  20  11 3  31 3  40 4  20 

= Y L (C − C11 ) − L2 (C21 − C30 ) + L3 (C40 − C31 ) + 3L4 

 

2 

20 20 C11 ) 
 

(3.1) 

 

Now we obtain MSE of t1s and have from squaring of (4.1) and taking expectation and using 

lemmas we get 
E(t1s  −Y)  =Y  Ey  +x  − 2xy + 4x y − 2xy  −6x y +3x y  − 2x  +3x  +  ..... . 

2 2 2 2 2 2 3 2 2 3 4 
 

Using the lemmas of (4.1), (4.2) and (4.3) we get the following expression for the bias of t1s up to 

the second order of approximation. 

MSE (t 
) = Y 

2 L1C02 + L1C20 − 2L1C21 + 4L2C21 − 2L2C12 − 2L2C30 − 6L3C31  
 

2     1s 


+ 3L C + 3L C C + 3L 2C 2 + 3L C + 9L C 


 

 3     22 4     20     02 4 11 3     40 4     40  
 

= Y 
2 

L1 (C02 + C20 − C11 ) + 2L2 (2C21 − C12 − C30 ) + 
 

 (3.2) 
+ 3L (C + C − 2C ) + 3L (3C + C  C + 2C 2 


 

 3 40 22 31 4 40 20     02 11  
 

Again re-write for estimator t2 s 

 

t2s 

 
 

= y 
x 

X 
= Y (1 + y)(1 + x) 

 

 (t2s 

 
 

− Y ) = y 
x
 

X 
= (y + x + xy) 

 

Taking expectation up to second order approximation, we have 

E(t2s − Y ) = E(y + x + xy) 
 

Hence, the second order bias and mean squared error up to second order approximation are given 

by 

Bias2 (t2s ) = Y L1C11 (3.3) 

 
MSE (t ) = Y 2 L C 

 
+ L C 

 
+ L C 

 
+ 2L C 

 
+ 2L C 

 
+ 2L C 

 
+ L C C + L 2C2 ) 

2     2s 1    02 1    20 3    22 1   11 2    21 2    12 4    20    02 4 11 

= Y 2 L (C + C20 + C11 ) + 2L2 (2C21 + C12 + L3C22 + L4 (C20 C02 + 2C 2 ) (3.4) 

(C 20 

02 
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For estimator t3s 

 X 


 t = y  = Y (1 + y)(1 + x)− 
 

 
 3s  x  

  
 

The second order bias and MSE of t3s 

 
 1 

Bias2 (t3s ) =  
C20 − 2L1C11 +   3 

L2C21 + 
3
 

L2C30 −  
 

4     20    11  
 

2 
+ 

 4  4 2  
 

 12 
L3C40 + L3C40 + 

 2 2 

4 
L4 C20 

 3  4 

 

 3  

L1 ( 
=  

C20 − 2C11 ) + L2 ( C21 − 
3 

C30 ) − L3 ( 
12 

C40 − C31 ) 
3  

 
(3.5) 

2 
+

  4 2  3  
 


 3L4 ( 

12 
C20 − 

3 
C20 C11 )  

 

and 

 
 2 

 
 

3 74 
 

 

 
 

2 73  
 

MSE (t 
L1(C02 + C20 − 2C11) + L2(3C21 − 2C12 − C30) + L3( 

) = Y 2 4
 

C40 + 2 C22 − C31) 
3  

2 3d  + L ( 214 C2 − 213 C C 
 

 

+ 22C C + 42C2 ) 

 


 4 

4 
20 3 

20 11 20   02 11 

 

 

… (3.6) 

 

The optimum value of is obtained by minimizing MSE2 (t3s ) . Theoretically the determination 

for the optimum value of     is very critical, the solution for the determination of this optimum 

value is obtained by numerical techniques. 

Similarly for the estimator t4 s 

t = y[ X {x + (1 − X }−1 ] 
 

The bias and MSE of second order of this estimator are given by 
 

Y L ( 2C −C ) + L ( 2C − 3C ) + L ( 4C − 3C ) 
Bias (t  ) =  

1
 

 

20 11 2 21 30 3 40 31 

 

2  4s 2 + 3L ( 4C 2 − 3C C )  
 4 20 20  11  

2 
2 

3 
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L (C 
 

 

 

− 2C ) + 2L (2C 

 

−C 

 

− 3C ) + 3L ( 4C   − 2C 

(3.7) 

 
− 2 3C ) 

MSE (t ) = Y 2 
 

1 02 11 2 21 12 30 3 40 22 31  

 

2     4s + 3L (3 4C2 + 2C C − 6 3C C + 2 2C2 )  
 4 20 20   11 20    11 11  

 

(3.8) 
 

The optimum value of  is obtained by minimizing MSE2 (t4s ) . Theoretically the determination 

for the optimum value of  is very critical, the solution for the determination of this optimum 

value is obtained by numerical techniques. 

 

5. Numerical Illustration 

 

For the two natural population data, we shall calculate the bias and the mean square error of the 

estimator and compare Bias and MSE for the first and second order of approximation. 

 
Data Set-1 

The data for the empirical analysis are taken from 1981, Utter Pradesh District Census Handbook, 

Aligar. The population consits of 340 villages under koil police station, with Y=Number of 

agricultural labour in 1981 and X=Area of the villages (in acre) in 1981. The following values are 

obtained 

 

Y = 73.76765 , X = 2419.04 , N = 340, n = 120, n = 70 , C02 = 0.7614, 
 

C20 = 0.5557, C11 = 0.2667, C03 = 2.6942, C12 = 0.0747, C21 = 0.1589, 

C30 = 0.7877, C13 = 0.1321, 

C31 = 0.8851, C04 = 17.4275, C22 = 0.8424, C40 = 1.3051 
 

Data Set-2 

 

The data for the empirical analysis are taken from 1981, Utter Pradesh District Census Handbook, 

Aligar. The population consists of 340 villages under koil police station, with Y=Number of 

cultivators in the villages in 1981 and X=Area of the villages (in acre) in 1981. The following 

values are obtained 



Daffodil International University Journal of Business and Economics, Vol. 1, No. 1, July 2006 45 
 

 

 

Y = 141.1294 , X = 2419.04 , N = 340, n = 120, n = 70 , C02 = 0.7614, 
 

C20 = 0.5944, C11 = 0.2667, C03 = 2.6942, C12 = 0.4720, C21 = 0.4897, 

C30 = 0.7877, C13 = 1.3923, 

C31 = 1.5586, C04 = 17.4275, C22 = 1.2681, C40 = 2.8457 
 
 

Table-4.1 The values of the bias and MSE of the estimators 

the data set-1. 

t1s,t2s , t3s and t4s for 

Estimator Bias MSE 

 First order Second order First order Second order 

t1s 
0.15092 0.15072 30.19263 30.50956 

t2 s 
.013928 0.13517 71.28859 72.53269 

t3s 
-0.03342 -0.03344 24.40271 24.44216 

t4 s 
0.00000 -0.00011 24.40271 24.43308 

 

Table-4.2 The values of the bias and MSE of the estimators 

the data set-2. 

t1s, t2s , t3s and t4s for 

 

Estimator Bias MSE 

 First order Second order First order Second 
order 

t1s 
0.21692 0.21671 84.77982 85.69287 

t2 s 
0.37697 0.37789 97.58332 98.65323 

t3s 
-0.11964 -0.11953 73.59757 74.04931 

t4 s 
0.00000 -0.00011 73.59757 73.81961 
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6. Conclusion 

Table-4.1 and Table 4.2 present the first order approximation of the estimators t1s,t2s , t3s 

 
and t4 s 

for two sets of data. The estimators t2s is a product estimator and it is considered in case of 

negative correlation. So the bias and mean squared errors are more. For the classical ratio 

estimator t1s , it is observed that the biases and the mean squared errors are increased for second 

order. The estimator t3s and t4s have the same mean squared error for the first order but the 

mean squared error of t4s is less than t3s for the second order. So the second order mean squared 

error of t3s makes a difference from t4s for both data sets. Finally it is clear that the estimator 

t4s is better than other estimators. 
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