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Abstract: This article is an attempt to show how robust regression, a computer 

based statistical technique introduced by P.J.Huber in 1973 and later developed by 

Rousseeuw (1984), Rousseeuw and Yohai (1984), and many others, can helps us in 

cases where OLS totally fails due to outliers, leverage points and non-normality of 

error d istribution. To infer from the estimators obtained from robust regression we 

generally need, especially for small samples, bootstrapping (resampling) technique 

that is also a computer intensive statistical technique introduced by Efron (1979), 

and later developed in many directions. This talk illustrates the whole thing by an 

example using data extracted from the Big Mac. Index with a purchasing power 

parity analysis. 

 

1. Introduction 

The purpose of regression analysis is to fit a model to quantify relations among observed 

variables .The classical linear model assumes a relation of the type 
 

 
where, 

y = x T  +  

i = 1,2,. .... , n , 

 

 
yi ' s 

 

 
are the values of a response variable 

 

 
Y , xi 

(1.1) 

 
are values of 

explanatory variables,  is an unknown vector of parameters of length p,  i  is a 

sequence of random errors. To fit a model we have to estimate and test the value of . 

The most well known method is the Least squares (LS) method. The LS stands on the 
assumptions that (i) xi is a vector of deterministic variable; (ii) i are normally distributed; 

(iii)  i ' s are identically and independently distributed random variables with mean 0 and 

variance 2. LS estimation (LSE) of  is the value of  that minimizes the residual sum of 

squares, r 2 , 

 r 2 = ( y − x 
T
  )2 (1.2) 
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From the time of its invention (in the beginning of the nineteenth century) it was a 
cornerstone of statistics. In spite of its mathematical beauty and computational simplicity 

LS method is now being criticized in case of long tailed distribution, for the inefficiency 
because of the heavy sensitivity to outliers. Outliers inflate the standard errors, error 
variance, confidence interval becomes stretched, and the estimators cannot become 

asymptotically consistent. To solve these problems, many research have proposed on the 
robust estimators, which are insensitive to outliers. LMS, LTS, robust MM regression are 
most commonly used robust regression techniques. Construction of a robust regression 

model is an iterative process. Necessary calculation with fruitful computational speed and 
sophisticated graphical representation are impossible without the help of modern 

computer technology. But to infer from the estimators obtained from robust regression 
we generally need, especially for small samples, bootstrapping technique that is also a 
computer intensive resampling technique introduced by Efron (1979) and later developed 

in many directions. 

This article is organized as follows: section 2 holds the study methodology and data 
source, section 3 contains different aspects of literature review, notion of outliers, 

leverage points, finite breakdown point and influence observations, why and how LSE is 
hopeless for estimating parameters and how we can overcome the problems of LS are 

discussed in section 3.1. In section 3.2 we have a brief discussion on how diagnostics and 
robust regression reach the same goal in different ways. Section 3.3 upholds different 
types of robust regression. In section 3.4 we describe some limitations of robust 

regression where as in section 3.5 we briefly narrate the gist of bootstrap technique and 
pinpoint how it helps us in dealings with those limitations. Section 4 illustrates the whole 
thing with purchasing power parity analysis (PPP). Conclusion is given in section 5,  

 
2. Study Methodologies and Data Source 

We consider the data set given by The Economist (Gujarati, 1995), published the Big. 

Mac. Index of 31 countries as a crude and hilarious, measure of whether international 
currencies at their current exchange rate, judged by the theory of purchasing power parity 

(PPP). We study and test how outliers or unexpected observations occur in a real data set 
and OLS method fails to estimate and predicts the regression model in presence of 
outliers and with the violations of normality in error distribution. We also use bootstrap 

as a simulation technique to infer from the robust regression estimates. In these purposes 
we use robust regression as well as regression diagnostics. We use Minitab version 12 
(1998), SPSS version 11 and12, and S-Plus 2000, and PROGRESS (Program for Robust 

Regression) for our necessary computations. 
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3. Literature Review 

3.1  Problems of OLS method and Classifications of Outliers in Regression 

It is well known that the least squares estimation (LSE) of the regression parameter  has 
the smallest variance among all the unbiased estimates when the errors are normally 
distributed. But the LSE is extremely sensitive to atypical data (an observation that is 
apart from the bulk of the data is treated as outlier (Staudte and, Sheather, 1990). Outliers 
are the observations that do not follow the pattern of the majority of the data, no matter 
how big the sample size is. Outlier can deviate in three ways: i) the change in the 
direction of response variable generally measured by absolute magnitude of 
standardized/studentized residual of the observation, ii) the deviation in the space of 
explanatory variable(s), deviated points in x-direction called leverage points, usually 
measured by magnitude of diagonal elements of ‘Hat’ matrix, and iii) the other is in both 

directions (X and Y). An observation ( yi , xi ) is called influential if it has drastic effect 

on LSE, measured by different types of diagnostic measures such as Cook’s distance 
(CD) (Cook, 1977), DFFITS, DFBETAS (Belsley, Kuh, and Welsch, 1980), etc. An 
outlier may or may not be influential. However, sometimes even a single outlier can 
totally make LSE unfaithful. LSE has finite breakdown point 1/n (finite breakdown point 
can be intuitively defined as the ratio of minimum number of contaminated observations 
that can blow up the estimator (Hampel et al., 1986)). Lack of stability of LSE is a 
serious problem for estimating the parameters, and for the lack of normality assumption 
on error terms, we cannot test the reliability of the estimated parameters by using the 
common test procedures like t, F or chi-square. We can depend on robust regression that 
possesses some stability in variance and bias under derivations from the regression 
model. In short, robust regression techniques provide answers similar to the least-squares 
regression when the data are linear with normally distributed errors, but differ 
significantly from the result of least-squares method when the errors don’t satisfy the 
normality conditions or/and when the data contain significant outliers.  

 
3.2 . Diagnostics Versus Robust Regression 

“Robustness and diagnostics are complementary approaches to the analysis of data, any 
one of the two alone is not good enough”. (Rousseeuw, 1984). ‘In robust statistics, one 
seeks new inferential methods that are rather insensitive to, or robust against, certain 
types of failures in the parametric model, so good answers are obtained even in some 
assumptions are only approximately true. Diagnostics have taken traditionally a 
somewhat different view. Rather than modifying the fitting method, diagnostics condition 
on the fit using standard methods to attempt to diagnose incorrect assumptions, allowing 
the analyst to modify them and refit under the new set of assumptions.’ (Stahel and 
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Weisberg, 1991). Field diagnostics is a combination of graphical and numerical tools. It 
is design to detect and delete the outliers first and then to fit the ‘good’ data by least 
squares. On the contrary, a robust regression first wants to fit a regression to the majority 
of the data and then to discover the outliers as those points that possess large residuals 
from the robust output. Hence the goal of robustness is to safeguard against deviation 
from the assumptions and diagnostics is used to find and identify deviations from the 
assumptions. Packages Minitab and SPSS have facilities for modern tools of diagnostics.  

 
3.3 . Different Types of Robust Regression 

There are different types of robust regression techniques are available in literature. The 
most commonly used methods are as follow: 

 

3.3 .1  Robust M (GM) Estimator 

In regression Huber P.J (1973) introduced M estimator that he had developed in 1964 to 
estimate location parameter robustly. The name “M-estimator” (Huber, 1964) comes 
from “generalized maximum likelihood”. Robust M-estimators attempt to limit the 
influence of outliers and based on the idea of replacing the squared residuals r i 

2 used in 
LS estimation with less rapidly increasing loss-function of the data value and parameter 

n 

estimate, yielding minimize   (ri ) ; where is a symmetric, positive-definite function 
i =1 

generally with a unique minimum at zero. Differentiating this expression with respect to 
the regression coefficients yields 

 
n 

 (ri )xi = 0 
i=1 

 
(3.3.1.1) 

where, , the derivative of , whose normalized is called the influence function that 
measures the influence of an observation on the value of the parameter estimate. If now 

 (z) 
we define a weight function w(z) = then equation (3.3.1.1) becomes 

z 

 w(r )r ri 
 

= 0; 
 

j = 1,2,. ....... , p. 
 

(3.3.1.2) 
 

i  i 


 

 
This is exactly the system of equations that we obtain. 

M-estimators are statistically more efficient (at a model with Gaussian errors) than L1 

regression while at the same time they are still robust with respect to outlying yi . It has 

j 
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 i:n 

i 

n 

 
two drawbacks: i) estimators are not equivariant (in many cases the nature of the 
observations is such that changing the units of measurement should have the conclusion 
unaltered, Davies 1993.) and ii) finite breakdown point is 1/n due to outlying 
remove these demerits Mallows (1975) suggested, 

xi . To 

n  ̂

 w(xi ) (ri / s )xi = 0 
i=1 

(3.3.1.3) 

where,  is estimated simultaneously by s^ and later some proposed some variants of this 
form, but nobody was able to attain maximum possible breakdown point.  

3.3 .2  Least Median of Squares Regression (LMS) 

LMS was proposed by Hampel (1975) and further developed by Rousseeuw (1984). 
Instead of minimizing the sum of squared residuals, Rousseeuw proposed minimizing 
their median as follows: 

min imize med r 2 . (3.3.2.1) 
 i 

 

This estimator effectively trims almost the (n/2) observations having the largest residuals, 
and uses the maximal residual value in the remaining set as the criterion to be minimized. 
Its breakdown point is  

n / 2− p + 2  for p-dimensional data set i.e., it attains maximum 
  
  

possible breakdown point 
1  

at usual models but unfortunately it possesses poor 
2 

asymptotic efficiency. So later robust statisticians developed LTS and MM estimators. In 
spite of that the family of LMS has excellent global robustness.  

 
3.3 .3  Least Trimmed Squares (LTS) Method 

LTS was introduced by Rousseeuw (1984) and is given by 
 

h 

min r 
2
 

 

(3.3.3.1) 

 
where, 

  i =1 

 

r 2  L  r 
 

2 denote the ordered squared residuals and h is to be chosen 
1:n n:n 

between 
n 

and n . The LTS estimators search for the optimal subset of size h who’s 
2 

least squares fit has the smallest sum of squares residuals. Hence, the LTS estimate of  

is then the least square estimate of that subset of size h . For the data comes from 
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n 

 s  

 

continuous distribution breakdown points of LTS equals min(n − h + 1, h − p + 1) / n, we 
n + p + 1 

have h = 
2 

yields the maximum breakdown point, is asymptotically 50%, 

whereas h=n gives the ordinary least squares with breakdown point=1/n. LTS has the 
properties such as affine equivariance and asymptotic normality. Its influence function is 
bounded for both (directions; response and explanatory) the vertical outliers and bad 
leverage points. Moreover, LTS regression has several advantages over LMS. Its 
objective function is smoother, making LTS less ‘jumpy’ (i.e., sensitive to local effects) 
than LMS. LTS has better statistical efficiency than LMS, because of its asymptotically 
normal property (Hossjer, 1994), where as LMS has a lower convergence rate 
(Rousseeuw 1984). This also makes the LTS more suitable than the LMS as a starting 
point for two-step estimators such as the MM – estimators (Yohai, 1987) and generalized 
M-estimators (Simpson, Ruppert and Carrol, 1992, Cookley and Hettmansperger, 1993). 
It also fails to fit a correct model when large number of clustered outliers exits and with 
more than 50% outliers in the data. The performance of this method has recently been 
improved by the FAST-LTS (Rousseeuw and Van Driessen, 1999) and Fast and robust 
bootstrap for LTS (Willems, G. and Stefan V. A, 2004). 

 
3.3 .4  S -Estimates and MM -Estimates of Regression 

 ̂

S-PLUS computes a robust M-estimate  , which minimizes the objective function 
 

  
 y − x

T
   

i i 

i=1 
  ̂  

(3.3.4.1) 

 
Where 

 
 ̂

s is a robust scale estimate for the residuals and  is a particular optimal 

symmetric bounded loss function, described below. 
 

 ̂

Alternatively  is a solution of the estimating equation 

n  y − xT   
 x 

 
 i i  

 
= 0 

i  ̂

i=1  s  (3.3.4.2) 

 =  is a redescending (nonmonotonic) function. A key issue is that since  .is 

bounded, it is nonconvex, and the minimization above can have many local minima. 

Correspondingly, the estimating equation above can have multiple solutions. S-PLUS 
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deals with this by computing highly robust initial estimates of 
 ̂

 and 
 ̂

s with breakdown 

point 0.5, using the S-estimate approach described below and computes the final estimate 
as the local minimum of the M-estimate objective function nearest to the initial estimate. 
We refer to an M-estimate of this type and computed in this special way as an MM- 
estimate, a term introduced by Yohai (1987). 

 

Fig 3.3.4.1 Tukey’s bisquare loss function and optimal loss function (Yohai and Zamar, 
1998) in S-Plus. 

The key to obtaining a good local minimum of the M-estimation objective function, when 
using a bounded, non-convex loss function is to compute a highly robust initial estimate 
< 0. S-PLUS does this by using the S-estimate method introduced by Rousseeuw and 
Yohai (1984), The S-estimate approach has as its foundation an M-estimate of an 
unknown scale parameter for observations y1, y2,............,yn , assumed to be robustly 
centered (that is, by subtracting a robust location estimate). The M-estimate s^ is obtained 
by solving the equation 

1 


n  
 yi  = .5  (3.3.4.3) 

n  s  
i=1   

where, . is a symmetric, bounded function. It is known that such a scale estimate has a 
breakdown point of one-half (Huber, 1981), and that one can find min-max bias robust 
M-estimates of scale. 
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y − x  

  

 
 

Following this M- estimate Rousseeuw and Yohai (1984) introduced regression 
S-estimate method. Let us consider the linear regression model modification.  

 T  
    i i   = .5 

 
(3.3.4.4) 

 
 

n − p  s( )  
 

 ̂

For each value of , we have a corresponding robust scale estimate s( ) . The regression 
 ̂

S-estimate (which stands for “minimizing a robust scale estimate”) is the value  0 
 ̂

minimizes s( ) : 

that 

 

 ̂  ̂

 0 = arg min s( ) 

 

and corresponding minimized functional value is S-estimate of  . 

This presents another nonlinear optimization, one for which the solution is traditionally 
found by a random resampling algorithm, followed by a local search (Yohai, Stahel, and 

 ̂

Zamar, 1991). Once the initial S-estimate of  0 is computed, the final M-estimate is 

obtained as the nearest local minimum of the M-estimate objective function. 

 

3. 4. Demerits of Robust Regression 

Though robust regression technique gives us better result as an alternative of OLS, it has 

some deficiencies − (i) The diversity of estimator types and the necessary choices of 
tuning constants, combined with a lack of guidance for these decisions (ii) The lack of 
simple procedures for inference or reluctance to use the straight forward inference based 
on asymptotic. Here we have to take some help from the re-sampling technique like 

‘bootstrapping’ especially for small samples (iii) unfamiliarity with interpretation of 
results from a robust analysis. 

 
3. 5. The Bootstrap Procedure 

3. 5.1 Bootstrap Standard Error, Bias and Confidence Interval (CI) 

Bootstrap technique proposed by Efron (1979) is such a procedure, which creates a huge 
number of sub-samples from a pre-observed data set by a simple random sampling with 
replacement that could be later used to investigate the nature of the population without having 
any assumption about them. This computer-based technique is used for estimating standard 

1 
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1 

B −1 

 

 
 

error, bias, confidence interval and other statistical measures. Bootstrap is a very useful 
technique indeed but caution must be taken while considering this technique. 

Le us wish to estimate a parameter of interest  = t(F ) on the basis of X , we calculate 

an estimate ˆ = S ( X ) from X . Efron (1979) proposed the bootstrap technique where 
X  = ( X  , X  ,..., X  ) is called the ‘bootstrap sample’. Practically we draw a large 

1 2 n 

number (say B ) of bootstrap samples, which may be represented as X 1, X 2 ,..., X B. 

Here the bootstrap replication corresponding to each bootstrap sample is 

ˆb = S ( X *b ),b = 1,2,.., B 

The estimated standard error becomes 

 

 
(3.5.1.1) 

 

se  ̂ = 
 1   B  *̂ (b) −  *̂ (.)2 2

  (3.5.1.2) 
B    

b=1  

 
where, ˆ (.) = 

1
 
 

B ˆ* (b) . The main advantage of using (3.5.1.2) as an estimate of standard 

 
error is that sêB 

B b=1 

approaches se 
n 

 
as B goes to infinity (Efron and Tibshirani, 1993). In this 

process it does not require any parametric assumption and this estimator can reduce the bias 
significantly. 

In parametric statistics we need generally large sample normal theory to construct 
confidence intervals. Through the use of bootstrap we can obtain more accurate intervals 
without large sample normal theory assumptions. There are several ways of constructing 
intervals. At first we introduce an interval that is known as bootstrap-t interval. After 
generating B bootstrap samples we compute 

 

Z  (b) = 
 ̂ (b) −   ̂
 

 

sê * (b) 

 
(3.5.1.3) 

 

where, ˆ* 
(b) = s( X *b ) is the value of ˆ for the bootstrap sample X *b 

.ˆ (b) and 

seˆ* (b) is the estimated standard error of ˆ* 
for the bootstrap sample X *b 

. The -th 

 

percentile of Z 

 
 (b) 

 

is estimated by the value tˆ( ) 
such that  = 

Z * (b)  t̂ ( )  
 

B 

F 
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B B 

up 

lo up 

, 

0 0 

    

 

Finally the bootstrap–t interval is  

  ̂− t̂ (1− )sê  ,   ̂− t̂ ( )sê   
Here we introduce another approach to CI based on percentile of the distribution of statistic. It is 
generally known as bootstrap percentile method. For bootstrap replications, let us define 

ˆlo = ˆ* ( ) 
=100 -th percentile of B bootstrap replications 

ˆ  = ˆ* (1− ) 
= 100(1-  )-th percentile of B bootstrap replications 

Then the bootstrap percentile interval of intended coverage (1-2  ) is given by 

(̂ ,ˆ )= (ˆ* ( ) ,ˆ* (1− ) ) 

It is well known that standard normal interval is neither second order accurate nor 
transformation respecting where as bootstrap-t interval is second order accurate, but not 
transformation respecting, and percentile interval is transformation respecting but not first order 
accurate. So another type of interval, the bias corrected and accelerated (BCa) interval that 
satisfies both conditions is considered in the bootstrap literature. The BCa interval of intended 
coverage (1-2  ) is defined as 

 ̂  ̂
lo up )= (ˆ( 1 ) ,ˆ( 2 ) ) 

 

 
 ̂ Z  ̂ + Z ( )  

 
 ̂ Z  ̂ + Z (1− )  

where, 1 =  

Z 0 + 

1 − â(Ẑ
 
+ Z ( ) ) 

and  2 =  

Z0 + 

1 − â(Ẑ + Z (1− ) )
 .

 

Here  is the standard normal cumulative distribution function: Z ( ) , the 100 th 
 ̂

percentile point of standard normal distribution; z 0 , the bias correction factor and aˆ , 

the acceleration factor. to consider the dependence of standard error on the parameter 
itself. "At the present level of development, the BCa intervals are recommended for 
general use, especially for nonparametric problems" (Efron and Tibshirani, 1993) and for 
small sample in inexact parametric case. 

 
3.5.2 Bootstrapping Regression 

The least square estimate is the solution to the so-called normal equations 

( 

0 0 
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i i 

r 

 

 

 
And is given by the formula 

X T X = X tY 

ˆ = ( X T X )−1 X t y (3.5.2.1) 

There are two general ways to bootstrap a regression like this; we can treat the predictors 

as random, potentially changing from sample or as fixed. Random-X resampling is also 
called case/pairs resampling, and fixed –X resampling is also called model-based 
resampling. Pairs bootstrapping involves choosing random samples in pairs from the 
original data set. Stratified bootstrapping involves resampling the data in groups defined 
by the magnitude of X. Residuals bootstrapping involves calculating the residuals, 

 ^ = y - xi 
ˆ , resampling these, and computing a new y* . 

 
Fixed -X Resamping (Bootstrap 1) 

How can we generate bootstrap replications when the model matrix X is fixed? One way 

to produce is to treat the fitted values ŷ i from the model as giving the expectation of the 

response for the bootstrap samples. Attaching a random error to each ŷ i produces a fixed 

–X bootstrap samples, y* = {y*  }. 
r ri 

The errors could be generated parametrically from a normal distribution with mean 0 and 

variance  2 , if we are willing to assume that the errors are normally distributed or non- 

parametrically, by resampling residuals from the original regression. We would then 

regress the bootstrapped values 

of regression coefficients. 

y* on the fixed X matrix to obtain bootstrap replications 

Let  * = ( * , * ,... * ) be the rth bootstrap errors, Where r = 1,2, ...B, and B is 
r r1 r 2 rn 

the bootstrap replications. Then the bootstrap responses y* = {y*  } are generated by 

y* = x  ^ +  * 

r ri 
 

(3.5.2.2) 
ri i ri 

which is called model based resampling of linear regression model, bootstrapping the 
residuals of linear regression model or Bootstrap 1 method of linear regression model.  

The bootstrap least –squares estimate 

for the bootstrap data 

 ^* is the minimizer of the residual squared error 

i 
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^* ) 
n
 

r 

F 

ri ri 

 
 

 

 
i=1 

2 

*  − x = min  
r 

i=1 

*  − xb) 
 

(3.5.2.3) 

The normal equation (3.5.2.1), applied to the bootstrap data, gives 

ˆ* = (X T X ) 1 
X T y* . (3.5.2.4) 

r r 

In this case we do not need Monte Carlo simulations to figure out bootstrap standard 
errors for the components of ˆ* 

.  An easy calculation gives a closed form expression 

for the varF^ ( ^* )=var  ( ^ ), the ideal bootstrap variance is 
i j 

var ( ^* ) = (X T X ) 1 
X T var(y* )X (X T X ) 1

 

r 

 

 
 

 ( * ) ^ 2
 

r 

=  ̂2 (X T X ) 1
 

 
 

 

 

 
^ 2 1 


n  

ˆ2 

Since var yr = F I where I is the identity matrix. and  F =   
n i=1 

Therefore, the algorithm to generate simulation datasets and corresponding parameter 
estimates is as follows: 

Algorithm (Model-based resampling in linear regression) 

For r =1,2,... ,B, 
 

 
Step 1 

(a ) Data matrix X is fixed 
(b ) Random sample  * = { * }, 

r ri 

(c ) The responses y* = {y*  } is generated 
r ri 

y* = x  ^ +  * i = 1,2,...,n 

 
Step 2 

ri i ri 

Least squares regression is fit to (X, y* ) giving estimates  * , var ( * ), j = 1,2,..., p 
r rj rj 

n 

(y (y 

2 
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bi j 

 

 
Random - X Resampling (Bootstrap 2) 

It is a completely different approach using the data as a sample of pairs, 

zi=(yi, xi)= ( yi , xi1 , xi 2 , ... xip ), (i = 1,2,..., n). In random –X resampling, we simply 

select B samples of pairs z* : i j {1,2...., n with replacement, b=1,2,---B; fit the model 

for each bootstrap sample and each time estimate the coefficients . Using B no. of values 
of estimators we estimate bootstrap standard error, bootstrap CI etc.  

(In this work we follow Bootstrap2.) 

 
4. Analyses and Discussion 

We now show how robust regression techniques give us more accurate results comparing 

to LS with an analysis of purchasing power parity analysis. The Big Mac. Index of 31 

countries as a crude and hilarious, measure of whether international currencies are at their 

current exchange rate, as judged by the theory of purchasing power parity (The PPP holds 

that a unit of currency should be able to buy the same bundle of goods in all countries). 

Consider the regression equation as: yi = 0  + 1xi +  i , where the response variable yi 

is the Actual Exchange Rate (AER), the explanatory variable is PPP and u i is the error 

term. Since the proponents of PPP argue that, in the long run, currencies tend to move 

toward their PPP, we have to estimate and test the null hypothesis H0: 0=0, 1=1 and the 

alternatives H1: 0 ≠0, 1 ≠1, especially on 1. At first, we perform a scatter plot using 

‘S-Plus’ (Fig: 4.1, appendix) and we see that one observation is apart from the bulk of the 

data in both directions, so we suspect this point as an outlier (leverage point). Now we 

entry the data under the ‘Program for Robust Regression’ (PROGRESS), we get the fitted 

values from ordinary Least Squares (LS) method and a robust regression technique 

“Least Median Squares (LMS) regression”; looking at the results from both the methods 

we find weakness of LS method, as for example we get –118.76 and .92 successively 

from the LS and LMS against actual exchange rate 1.00 (Argentina), table 4.3. But if we 

consider the case for Poland we get LS predicts more accurate than LMS. This means that 

LS is extremely affected by outlier. From the Fig: 4.2 we see that LS fit the line 

wonderfully with the outlier in the factor space while Fig 4.4 (in appendix) indicates that 

it is also too influential. We get the value for coefficient of determination, R2 (Adjusted) 

=. 993, table 4.1,hence the leverage point is treated itself as good leverage, it improves 

the precision of the regression coefficient, F = 4341.62 (p = .0000), but how vague the 

result is!  We know that inference of LS depends on the assumption that errors are 
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normally distributed. We see from normal probability plot Fig: 4.3 that normality has 

seriously broken. To judge it in probabilistic term we calculate RM value (Imon 2003)= 

370.5067 (whose p-value =. 0000). We can now safely infer that assumption of normality 

is strongly unreliable. There fore, we cannot use the LS method. We then use the 

methods of robust regression LMS and MM, both the methods give us slightly different 

fitted values comparing with LS, see Fig: 4.5. Next, we perform the two above methods 

without the leverage point. We see all the techniques give more accurate result without 

leverage point. A drastically changes occur in LS after the elimination of the case 22. Fig: 

4.6 show it clearly; the fitted lines are approximately same in all the methods. We get 

calculated value of t (25.95) is greater than tabulated t (2.045) with 29 degrees of 

freedom, i.e. we may reject the H0: 1=1; there is no strong evidence that according to the 

proponent of PPP currencies tend to move toward their PPP. WLS gives reverse direction 

about 1. When we consider the LMS and MM robust techniques for the estimates, we 

depend on ‘bootstrapping’. Traditionally researchers have relied on different versions of 

central limit theorem and normal approximation to obtain confidence intervals. These 

techniques are valid only if the statistic or some known transformation on it is 

asymptotically normally distributed and sample size is large. If the normality assumption 

does not hold, then the traditional method cannot be used to obtain confidence intervals. 

We have already mentioned in the section 3.4 that with the availability of modern 

computing power, researchers need no longer rely on asymptotic theory to estimate the 

distribution of a statistic. They may use re- sampling methods, for either normal or non 

normal distributions. (Chen. C.), to estimate the confidence intervals (CI). Using the pair 

wise bootstrap we have got the 95% CI for 1= (.5799,1.451) in the case of LMS, This 

make decision in favor of 1=1. 

 
Table: 4.1 Model summary of LS method. 

 

 

Model Parameters 

 

R2 Adj. 
R2 

Std. 

Err. 

 

DW 
F- 

Value 

p- 

Value 

Coef Esitim 
Std. 

Err. 

t- 

Value 

p- 

Value 

      

0 -121.3 61.87 -1.96 0.06  

.993 

 

.993 

 

332.7 

3 

 

2.01 

3 

 

4341. 

62 

 

0.000 

1 1.651 0.025 25.95 0.000 
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Table 4.2 Basic findings of AER and PPP regression. 
 

Findings 

Criteria 

Alarming 

values 
Cut-off Values No. 

Obs. 

Comments: 

Standardized -4.62 Absolute value < 3 18 Observation 22 is an 

Residuals 
4.94 

 
22 

outlier as well as a 
leverage point and an 

 
-2.2 a 

 
26 

influential observation of 
extreme type. But 

observation 18 is an outlier 
but not a  leverage point. It Studentized -8.83 Absolute value < 3 18 

Residuals 12.2311 
 

22 
shows significant influence 
by DFFITs, not by Cook 

 
-2.36 b 

 
26 

Distance. 

hii (Diagonal 

Elements of Hat 

matrix) 

0.967 c 
>3 

p 
= 0.19 

n 

22 
a absolute value of all 

others  0.596 

b absolute  value  of  all 

  or  others  0.562 

  
>2 

p 
= 0.129 

 
c all other values  0.042 

  n  d all other values  0.08 

CD2(i) 0.473 d Near 1 18 e  absolute  value  of  all 

(Cook Distance) 363.13 
 

22 
other values  0.1062 

DFFITS(i) -1.8992 
1 

 2 ( p / n)2 = 0.508 
18 

 

 66.6946  22  

 
-0.4372 e 

 
26 
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Table 4.3 Results for the values of AER, PPP, Fitted LS, Fitted LMS and Fitted MM 
 

In Count. AER PPP FitLS LMS MM D.Hat WLS WMM WLMS 

1 Argentin 1.00 1.57 -118.7 .92 1.87 .03 10.79 1.78 .92 

2 Australia  1.42 1.07 -119.6 .46 1.41 .03 10.29 1.32 .48 

3 Austra  12.00 14.8 -96.91 13.24 14.03 .03 23.85 13.96 13.24 

4 Belgiam 35.2 47.39 -43.09 43.6 44.01 .03 56.03 43.96 43.6 

5 Brazil 949 652 955.37 606.7 600.03 .03 6529 600.5 606.7 

6 Britain 1.46 1.27 -119.3 .64 1.59 .03 10.5 1.5 .64 

7 Canada 1.39 1.24 -119.3 .62 1.56 .03 10.5 1.48 .62 

8 Chile 414 412 559.03 383.1 379.3 .03 416 379.6 383.2 

9 China 8.7 3.91 -114.9 3.1 4.02 ..03 13.1 3.93 3.1 

10 Cech.R 29.7 21.7 -85.52 19.67 20.38 .03 30.7 20.31 19.67 

11 Denmk 6.69 11.2 -102.8 9.89 10.72 .03 20.3 10.64 9.89 

12 France 5.83 8.04 -108.0 6.95 7.82 .03 17.2 7.74 6.95 

13 Germ.y 1.71 2.0 -118.0 1.32 2.26 .03 11.2 2018 1.32 

14 Greece 251 270 324.53 25.92 248.7 .03 276 248.8 250.9 

15 Holland 1.92 2.37 -117.4 1.67 2.6 .03 11.6 2.52 1.67 

16 Hongko. 7.73 4.0 -114.7 3.19 4.1 .03 13.2 4.02 3.19 

17 Hungary 103 73.48 -.01 67.9 68.0 .03 81.78 67.97 67.9 

18 Italy 1641 1978 3145.1 1841. 1819.5 .04 1962 1821. 1842 

19 Japan 104 170 159.39 157.7 156.76 .03 177.1 156.8 157.8 

20 Malaysia  2.69 1.64 -118.7 .99 1.93 .03 10.86 1.84 .99 

21 Mexico 3.36 3.52 -115.5 2.74 3.66 .03 12.71 3.57 2.74 

22 Poland 22433 13478 2213.6 12552 12395 .97    

23 Portugal 174 191 194.07 177.3 176.08 .03 197.8 176.1 177.4 

24 Russia  1775 1261 1961.1 1173 1160 .03 1254 1161. 1178 

25 Singapor 1.57 1.3 -119 .67 1.62 .03 10.52 1.53 .67 

26 S.Korea 810 1000 1530.1 930.8 920 .03 996.5 920.8 930.8 

27 Spain 138 150 126.36 139.2 138.4 .03 157.3 138.4 139.2 

28 Sweden 7.97 11.1 -103 9.8 10.63 .03 20.2 10.55 9.8 

29 Swit.land 1.44 2.48 -117 1.77 2.7 .03 11.69 2.62 1.77 

30 Taiwan 26.4 26.96 -76.83 24.57 25.22 .03 35.85 25.15 24.57 

31 Thailand 25.30 20.87 -86.89 18.9 19.62 .03 29.84 19.54 18.9 
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5. Conclusion 

Finally we reach on a conclusion that LS is totally fails due to outliers. We must have 
depends on robust regression and/or regression diagnostics methods when outliers present 
in the data set or error distribution is non-normal and we can use bootstrap technique to 
infer from the estimates of robust regression methods. 
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Fig. 4.1 Scatter plot for AER vs PPP. Fig. 4.2 LS fitted line with smooth plot. 
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Fig. 4.3 Residuals normal PP plot. Fig. 4.4 Index Plot of Cook Distance. 
 

 

Fig. 4.5 Fitted line from LS, MM and LMS. Fig. 4.6 Fitted line without 1 leverage point. 
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